Black MLCT Absorbers

Peter A. Anderson,[†] Geoffrey F. Strouse,[§] Joseph A. Treadway,[‡] F. Richard Keene,^{*,†} and Thomas J. Meyer^{*,‡}

Department of Molecular Sciences, James Cook University of North Queensland, Townsville, Queensland 48 1 **1,** Australia, and Department of Chemistry, The University of North Carolina CB# 3290, Chapel Hill, North Carolina 27599-3290

Received June **3,** *1994*

Polypyridyl complexes of ruthenium(**11)** have been used extensively in studies of photoinduced electron and energy transfer.' We recently reported the development of a general procedure for synthesis of tris(heteroleptic) complexes which contain bidentate ligands,² e.g. $\lceil Ru(bpy)(Me_2bpy)\rceil (Et_2CO_2)_2$ bpy $]^{2+}$ (bpy is 2,2'-bipyridine, Me₂bpy is 4,4'-dimethyl-2,2'bipyridine, and $(EtCO₂)₂$ bpy is 4,4'-bis(carboxyethyl)-2,2'bipyridine), based **on** sequential addition of the ligands to oligomeric $\left[\text{Ru(CO)_2Cl}_2\right]$, and the earlier work of Deacon *et al.*³ We report here application of this methodology to a specific target: *uiz.* the systematic design of chromophores with appreciable absorption throughout the near-UV and visible spectral regions. Initial photophysical studies indicate that the metal-to-ligand charge transfer (MLCT) excited states that result can be sufficiently long-lived to undergo efficient electron and energy transfer and they tend to be photochemically inert compared with $\lceil Ru(bpy)_3\rceil^{2+}$.

Visible light absorptivity in these complexes arises primarily from charge transfer transitions from $d\pi(Ru^{II})$ to multiple, lowlying π^* (polypyridyl) levels, e.g. eq 1.⁴

$$
Ru^{II}(bpy)_3^{2+} \stackrel{hv}{\rightarrow} Ru^{III}(bpy^*)(bpy)_2^{2+} \qquad (1)
$$

In this example, $d\pi \rightarrow \pi_1^*$ **occurs at 450 nm and** $d\pi \rightarrow \pi_2^*$ **at**
2.1.2 at $\sin \theta = 0.7$ at $\cos \theta = 0.7$ is the set of $\sin \theta = 0.7$ at $\sin \theta = 0.7$ In this example, $d\pi \rightarrow \pi_1^*$ occurs at 450 nm and $d\pi \rightarrow \pi_2^*$ at 243 nm in CH₃CN.¹ Ligand-based, $\pi \rightarrow \pi^*$ transitions with absorptivities $>40\,000 \text{ m}^2 \text{ mol}^{-1}$ dominate the near-UV region.⁵

- (1) (a) Scandola, F.; Bignozzi, C. A.; Indelli, M. T. Photosensitization and Photocatalysis Using Inorganic And Organometallic Compounds;
Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp
161–216. (b) Juris, Belser, P.; von Zelewsky, A. *Coord. Chem. Rev.* 1988, 84, 85. (c) Meyer,
T. J. *Pure Appl. Chem.* 1986, 58, 1576. (d) Kalayanasundaram, K.
Coord. Chem. Rev. 1982, 46, 159. (e) Sutin, N.; Creutz, C*. Pure Appl. Chem.* **1980, 52, 2717.**
- **(2)** (a) Strouse, **G.** F.; Anderson, P. A,; Schoonover, J. R.; Meyer, T. J.; Keene, F. *R.Znorg. Chem.* **1992,31,3004.** (b) Strouse, **G.** F.; Haarmann, K. H.; Reitsma, D. R.; Anderson, P. A.; Treadway, J. A.; Meyer, T. J.; Keene, F. R. Manuscript in preparation.
- **(3)** (a) Black, D. *S.;* Deacon, G. B.; Thomas, N. C. *Aust. J.* Chem. **1982, 35,2445.** (b) Black, D. *S.;* Deacon, G. B.; Thomas, N. C. *Znorg. Chim. Acta* **1982, 65, L75.** (c) Black, D. *S.;* Deacon, G. B.; Thomas, N. C. *Polyhedron* **1983, 2, 409.** (d) Thomas, N. C.; Deacon, G. B. *Znorg. Synth.* **1989, 25, 107.**
- **(4)** (a) Kober, **E.** M.; Meyer, T. J. *Znorg. Chem.* **1982,2l, 3967.** (b) Watts, **J.** *J. Chem. Educ.* **1983,** *60,* **843.** (c) Demas, J.; Taylor, D. G. *Znorg. Chem.* **1974,** *18,* **3177.**
- *(5)* Lytle, F. E.; Hercules, D. M. *J.* Am. *Chem. SOC.* **1969, 91, 253.**

The MLCT transitions produce excited states that are largely singlet, e.g. $(1(d\pi^6) \rightarrow 1(d\pi^5 \pi^{*1})$, but which possess significant triplet character due to spin-orbit coupling.⁴ In mixed-chelate complexes, separate transitions occur to each of the ligands, but rapid intramolecular electron transfer leads ultimately to a triplet MLCT state in which the excited electron is localized on the ligand having the lowest π^* -acceptor orbital.⁶ Our design strategy for black absorbers was to find ways to systematically shift the $d\pi \rightarrow \pi^*$ bands toward the red region of the spectrum. There are two approaches to this problem. One is to add electronwithdrawing groups to a polypyridyl ligand to lower π^* ,⁷ and the other is to stabilize the "hole" at Ru^{III} in the MLCT state by introducing electron-donating ligands.*

We have explored the effect of decreasing π^* energies in the series $[Ru(Me_2bpy)(Me_4bpy)(BL)]^{2+}$ (Me₄bpy is 4,4',5,5'-tetramethyl-2,2'-bipyridine) where BL is 2,3-bis(2-pyridyl)pyrazine (dpp), 6,7-dimethyl-2,3-bis(2-pyridyl)quinoxaline (Me₂dpq), 2,3**bis(2-pyridy1)quinoxaline** (dpq), or 2,3-bis(2-pyridyl)- 1,4-diazaanthracene (dpa).9 Electrochemical measurements show that in

this series $E_{1/2} = -1.09, -0.91, -0.83,$ and -0.67 V, respectively (in acetonitrileversus ssce), for the first (ligand-based) reduction. Since the BL ligands are more easily reduced than either Me₂bpy or Me4bpy, the potentials indicate the order of increasing electronacceptor ability to be dpa $>$ dpq $>$ Me₂dpq $>$ dpp. This ordering tracks the lowest-energy MLCT bands (Figure la), and is consistent with earlier observations **on** related complexes.10

(8) Rillema, D. P.; Mack, K. B. *Znorg. Chem.* **1982,21,3849.** (b) Rillema, D. P.; Blanton, C. B.; Shaver, R. J.; Jackman, D. C.; Boldaji, **M.;** Bundy, **S.;** Worl, L. A.; Meyer, T. J. *Znorg. Chem.* **1992, 31, 1600.**

0 1994 American Chemical Society

f James Cook University of North Queensland.

[:]The University of North Carolina.

¹ Present address: Institut für Anorganische Chemie, Universität Bern, Freiestrasse **3,** CH3000 Bern **9,** Switzerland.

^{(6) (}a) Mabrouk, P. A.; Wrighton, M. S. *Inorg. Chem.* 1986, 25, 526. (b)
Chang, Y. J.; Xiaobing, X.; Soo-Chang, Y.; Anderson, D. R.; Orman,
L. K.; Hopkins, J. B. J. Phys. Chem. 1990, 94, 729. (c) Bradley, P. G.;
Kress, N *Chem. Soc.* 1981, 103, 7441. (d) Caspar, J. V.; Westmoreland, T. D.; Allen, G. H.; Bradley, P. G.; Meyer, T. J.; Woodruff, W. H. *J. Am. Chem. SOC.* **1984, 206, 3492.** (e) Danzer, **G.** D.; Golus, J. **A.;** Kincaid, J. R. *J.* Am. *Chem. SOC.* **1993,115, 8643.** *(0* Ford, **W.** E.; Calvin, M. *Chem. Phys.* Lett. **1980,76,105.** (g) Riesen, **H.;** Krausz, E. R. *J. Phys. Chem.* **1993, 99, 7614.**

^{(7) (}a) Lever, A. B. P. *Inorg. Chem.* 1990, 29, 1271. (b) Sullivan, B. P.;
Caspar, J. V.; Johnson, S. R.; Meyer, T. J. *Organometallics* 1984, 3,
1241. (c) Curtis, J. C.; Sullivan, B. P.; Meyer, T. J. *Inorg. Chem.* 1983

Figure 1. UV-visible absorption spectrum of (A) [Ru(Me₂bpy)- $(Me_4bpy)(BL)|^{2+}$, and (B) $[Ru(Me_2bpy)(EtCO_2)_{2}bpy)\{(BL)|^{2+} \text{ in}$ acetonitrile solution $BL = dpa (- \cdots -)$, dpq $(- \cdots)$, dpp $(-)$.

The shift to lower energy reaches $\lambda_{\text{max}} = 568 \text{ nm}$ for BL = dpa, but at the expense of creating a "spectral gap" with a minimum at \sim 470 nm. The gap can be filled by using a ligand with an intermediate π^* -acceptor orbital. This is illustrated in Figure 1b for the series $\text{[Ru(Me_2bpy)}\text{([EtCO}_2)\text{;bpy]}$ $\text{[BL)}\text{]}$ ²⁺. With BL = dpa, bands arising from $d\pi \rightarrow \pi_1^*$ are observed at 548, \sim 452, and \sim 410 nm (to dpa, (EtCO₂₎₂bpy, and Me₂bpy, respectively), while bands from $d\pi \rightarrow \pi_2^*$ appear at higher energy.

It is possible to extend MLCT absorption to even lower energies by incorporating an electron-donating ligand that possesses significant σ - and π -donating character; we have used dieth-

Figure 2. UV-visible absorption spectra of $\left[\text{Ru}_{1}\right]\left(\text{EtCO}_{2}\right)_{2}$ bpy}(dpa)- $(Et_2dtc)' + (- \cdots -)$ and $[Ru(Me_2bpy)(EtCQ_2)_2bpy)(Et_2dtc']^+ (- \cdots)$ in acetonitrile solution. The spectrum of $[Ru(bpy)_3]^{2+}$ is shown for comparison $(-)$.

yldithiocarbamate anion, Et_2dtc^{-1} Anionic ligands stabilize the excited states by electron donation to Ru^{III} (eq 1) causing a general red shift in the MLCT bands. Absorption spectra for [Ru- $\{ (EtCO₂)₂ bpy \} (dpa) (Et₂dtc) \$ ⁺ and $[Ru(Me₂ bpy) \{ (EtCO₂)₂$ bpy }(Et₂dtc)]⁺ are shown in Figure 2. In the former, significant visible light absorption $(\epsilon > 3000 \text{ m}^2 \text{ mol}^{-1})$ is extended past 700 nm. Both exhibit significant light absorption throughout the visible.

These low-energy broad-band absorbers may have useful excited state properties as well. For instance, $\text{[Ru(Me_2bpy)}(\text{EtCO}_2)_2$ bpy)(dpa)]^{2+*} is a near-IR emitter $(\lambda_{\text{max}} > 850 \text{ nm in } CH_3CN)$ at 298 K) with $\tau = 98(\pm 5)$ ns ($k = 1.02 \times 10^7$ s⁻¹),¹² as determined by transient absorption measurements $(3-4 \text{ mJ/pulse})$. Emission from $\text{[Ru(Me}_2 \text{bpy})\text{[(EtCO}_2)_2 \text{bpy}\text{](Et}_2 \text{dtc)}$ ^{+*} occurs at λ_{max} = 1100 nm (in CH₃CN at 298 K) with $\tau = 12(\pm 4)$ ns, as measured by transient absorption $(\lambda_{ex} = 532 \text{ nm}, \leq 5 \text{ mJ/pulse})$.¹³ All of these complexes are photochemically inert. In the future we will extend the overlapping band strategy and known approaches for extending excited state lifetimes to prepare a family of black absorbers which can be used as sensitizers.

Acknowledgment. Financial support from the Australian Research Council and the **US.** Department of Energy (Grant DE-FG05-86ER13633) is gratefully acknowledged. Travel between the two laboratories (G.F.S., J.A.T., P.A.A.) has been supported by the US National Science Foundation (Grant INT-901 5262) and the (Australian) Department of Industry, Technology, and Regional Development within the Australia-US Bilateral Science and Technology Program.

- **(13)** We acknowledge Dr. J. V. Caspar for this measurement.
- (14) Boyde, S.; Strouse, G. F.; Jones, W. **E.,** Jr.; Meyer, T. J. J. *Am. Chem.* Soc. 1990, 112, 7395.

⁽⁹⁾ Satisfactory elemental analyses $(\pm 0.4\%$ for C,H,N) were found for all the complexes reported in this manuscript.

^{(10) (}a) Bianaio, J. A.; Carlson, D. L.; Wolosh, G. M.; DeJesus, D. E.; Knowles,
C. F.; Szabo, E. G.; Murphy, W. R. *Inorg. Chem.* 1990, 29, 2327. (b)
Carlson, D. L.; Murphy, W. R. *Inorg. Chim. Acta* 1991, 181, 61. (c) (1 Molnar, **S.** M.; Neville, K. R.; Jensen, G. E.; Brewer, K. J. Inorg. *Chim. Acta* **1993, 206, 69.**

^(1 1) (a) Van Gaal, H. **L.** M.; Diesveld, J. W.; Pijpers, F. W.; van der Linden, J. G. M. Inorg. *Chem.* **1979,18,3251. (b)** Bond, **A.** M.; Martin, R. **L.**

Coord. Chem. Rev. **1984**, 54, 23. *Coord. Chem. Rev.* **1984**, 54, 23. *Coord. We acknowledge Dr. S. L. Mecklenburg for this measurement.*